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(This is a work in progress, so forgive blank and duplicate sections.) The sl(4,R) algebra as a
real-valued, background-dependent representation of the Standard Model is shown to be a basis
for unification as a gauge invariance of the metric in General Relativity, a background independent
theory. No changes are made to the Einstein field equations, merely a reinterpretation as an identity.
The sl(4,R) algebra contains both fermionic and bosonic fields as well as scalar, vector and tensor
gravitational fields. Mass parameters of those fields are constrained by the volume integral of the
the trace of the stress-energy tensor into a non-linear eigenvalue equation giving mass values. This
is shown to be true in several cases: static, spherically symmetric gravity, covariant gravitational
radiation, EM radiation, black holes, galaxies and the Aharonov-Bohm effect. In different regimes
gravity gives normal Schwarzschild gravity, black holes without singularity. The baryon asymmetry
and its cosmological implications are discussed. Experiments to validate and refute are proposed.a
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I. INTRODUCTION

Physics is certainly in a Kuhnian crisis with 95+%
of the universe of unknown composition, a status that
has persisted for many years. There has also been little
progress deconflicting GR and QT, answering the ques-
tion of unification, or eliminating the problems of sin-
gularity and infinities. The last two owe their existence
to the lack of an underlying model of matter/particle
[1]. The mechanism by which matter both curves, and
is guided by spacetime is left unspecified. So is the ori-
gin of inertia. It is time for a paradigm shift; time to
reassess the underlying assumptions of physical theory.
This already-unified gauge hypothesis answers each of
the above mentioned issues. It does so while leaving the
equations of GR and QT intact and narrowing the ontol-
ogy rather than widening it. Not only does it provide a
great simplification, but a host of problems in theory dis-
appear, and DM and DE appear. It should be expected
that some accepted ”truths”, whose existence is the re-
sult of inductive reasoning rather than experiment, will
in fact be refuted.

First a pedagogical overview of this theory is given.
This is followed by a developmental history showing how
each concept is deduced or inferred from the previous.
Examples follow.

We certainly know space and time exist, by definition,
via rod and clock measurements. If we take Occam’s
razor seriously, it is incumbent upon physics to determine
if physical theory can be based on just that - spacetime.
The hypothesis herein is that it is true.
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Since the discovery of the nuclear forces and the suc-
cess of Quantum Electrodynamics (QED) the focus of
unification has primarily been on quantum field theory
[2]. Since 3 of the 4 forces are represented in the Standard
Model (SM) it seems reasonable to try to quantize the
gravitational field to complete the task. However this
could be a category error. It is possible that quantum
principles do not apply to gravity, or that they apply to
gravity but not to General Relativity(GR) [3], since it is
a background independent theory. Also, unification from
a GR perspective is no less valid than through QFT [4].
In either case a connection between the two frameworks
should emerge. Although attempts at classical unifica-
tion have been unsuccessful, there is a good argument to
proceed in that direction. Electromagnetism (EM) has
one foot in each world. It is a long range force with a suc-
cessful well developed classical theory like gravitation. It
is an integral part of the SM and closely tied to the weak
force. Unification of EM with gravity is therefore certain
to define the relationship between gravity and quantum
theory. Unification is far more than just bringing grav-
ity ”into the fold”. It requires the solution to two of the
most pressing problems in theoretical physics — the re-
lationship between GR and QT, and the description of
particle.

The approaches to unification, classical and quantum,
all appear to have one aspect in common. They general-
ize, extend or add degrees of freedom to the mathematical
framework. String theory, loop quantum gravity, extra
dimensions, non-symmetric connections/torsion, com-
plex metrics, Finsler spaces, etc., have not yet worked.
Theories of unification have become increasingly complex
and removed from verifiability and falsifiability such as
the GUT theories and Supersymmetry. A much simpler
formulation is possible. What emerges is a gravitational



field as a relativistic gauge field alongside the other forces,
and General Relativity as a covariant gauge theory of
them all. In this process the Einstein Field Equation
(EFE) is promoted to an identity.

II. METHODOLOGY

A subtle yet profound change to the ontological [5]
basis of physics can both lead the way to a unified
field theory and shed light on the epistemological dif-
ferences between General Relativity(GR) and Quantum
Theory(QT). There is a simple framework for unification
that is testable, refutable, and leaves the mathematical
structure of general relativity and quantum field theory
intact, namely.

Gµν + Λ gµν =
8π κ

c2
Tµν , (1)

for the Einstein Field Equation (EFE) and

Fµν
;ν = jµ, F [µν,λ ] = 0, (2)

∇νF
µν = jµ, F [µν,λ ] = 0, (3)

for the Maxwell Equations (ME). (The sign convention
being used is Mostly Minus (MM) for the metric).

This already-unified gauge field theory is an extremely
simple theory. It eliminates singularities from the
theory. It reconciles the background-independent and
background-dependent foundations of general relativity
and quantum theory, respectively. It eliminates the need
to ”put in by hand” the right hand side of the EFE. It
can also provide the missing picture [6] for quantum the-
ory. It solves several outstanding problems in physics
and naturally includes Dark Matter and Dark Energy.
The following set of deductions and inferences provides a
compelling argument for this already-unified gauge field
theory. The reasoning is based upon two principles that
are not entirely independent. They are actually inferred
from the theory, not the other way around.

Regardless of whether spacetime is discrete or contin-
uous at the smallest scales, it will be treated here as a
continuum, possibly limiting the scale of applicability.

A. Axioms

1. The only necessary field is the field of event dis-
placements.

Historically the field concept was introduced to
avoid action-at-a-distance [7]. A dynamical space-
time accomplishes this for gravity in GR through
the metric tensor; matter curves spacetime, space-
time guides matter. There is no such view for the
EM forces. In that case the space is mitigated by a
field. It is necessary to have a dynamical spacetime

formulation of EM to fit it into GR. The use of the
word mitigated above is literal: to lessen. Assum-
ing matter at a distance cannot interact without
fields yields a contrapositive: if material particles
do interact without fields, then they must not be
”at a distance”. There is only one way this can
happen: matter itself must extend through space-
time, as part of the same continuum, so that one
particle can smoothly meld into another. So in or-
der to eliminate the field concept, a particle must
be made up of the same ”stuff” as spacetime with
most of it fairly well localized to appear as a par-
ticle. Two particles can therefore interact using a
field as an intermediary, or a dynamical spacetime.
The field concept becomes superfluous if it can be
shown that the event displacement field solves the
same equations. Furthermore, asserting that ”New-
tonian space and time and the gravitational field
are the same entity” [8], particles must be made of
gravitational fields as well. This is shown below and
is the implementation of what has been called the
Maxwellian dream [1]. Empty space is not empty.
It has mass. It is mass. What we see as quantum
fluctuations are tiny fluctuations in this ”stuff” due
to the motions of everything. What we see as DM
is over-densities of this ”stuff”. Further more, there
must therefore be a gravitational temperature as-
sociated with these fluctuations. What we see as
DE is the result of stretching it. This also explains
why ΛCDM works as well as it does despite the
clumpiness of the cosmic web.

2. The field should be free from singularities.

The presence of singularities in GR is unacceptable
to many general relativists [9]. This was also Ein-
stein’s viewpoint [10]; an acceptable theory has to
work everywhere. Infinities are unmeasurable. Par-
ticles must be represented by a finite matter field
in some finite region. The observables of spacetime
are distance and duration. These are specified by
the metric tensor. Therefore, for any real configura-
tion of matter there must exist a coordinate system
that results in measurable intervals everywhere. As
will be shown, the removal of singularities is an au-
tomatic byproduct of the gauge theory.

B. The Gauge Field

GR is a gauge theory. The gauge invariance of GR
is the invariance of the spacetime interval under coor-
dinate transformations (diffeomorphisms). In contrast,
the gauge fields of the forces are based upon the (not
necessarily diffeomorphic) metric gauge invariance of the
4-volume: in particular the Lie group SL(4,R). Coor-
dinate gauge invariance of the 4-volume element τ , for
example, is

√
−ḡdτ̄ =

√
−gdτ, (4)
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while its metric gauge invariance is
√
−ḡdτ =

√
−gdτ. (5)

It has been shown that all the Lie groups of the SM can
be found within the corresponding algebra of sl(4,R)
and its inner and outer automorphisms [11].

The Maxwell equations, Eqs. (2) are analogous to the
equations of fluid flow, complete with sources, sinks and
vortices. This was noted by Maxwell early on and there
were attempts to mechanize the field with a quasi-elastic
ether model [12]. Riemann attempted to unify gravity
and electromagnetism with such a model [13]. The ap-
proach was to assume space contained some kind of sub-
stance that could flow or spin. These ideas were un-
workable. Michelson and Morely showed that there is
no lumeniferous ether [14]; such a substance would per-
meate space and serve as a dynamical medium for EM
kinematics. Therefore the analogy is either an accidental
coincidence, or it represents some other kind of motion.
There is only one other possibility for such a displace-
ment field. It is that the Maxwell equations represent
a transformation of spacetime points themselves, rather
than some substance occupying spacetime points. Just
accepting it as a ”field” admits that the structure of the
equations is a coincidence. Such an acceptance also in-
troduces a new elementary object that requires its rela-
tionship to gravity be separately defined, unnecessarily
complicating the ontology [15] – Occam’s razor.

The transformation of events can be described mathe-
matically in the same way as that of a deformable phys-
ical medium. Consider an infinitesimal displacement, ξξξ,
in the neighborhood of a small volume element in a 3 di-
mensional Euclidean space. It is composed of a rotation,
a compression (extension or shear), and a translation [16].

ξi
(
xj
)
= ξi(0) + ξi,jdx

j +O
[
dx2
]

≈ ξi0 + gil
[
1

2
(ξl,j + ξj,l) dx

j +
1

2
(ξl,j − ξj,l) dx

j

]
,

{i, j, l} ∈ {1, 2, 3}. (6)

This can be generalized to a 4-dimensional pseudo-
Euclidian base space, having metric g, that is tangent
to the Riemannian manifold at some point. In that case
temporal displacements as well as spatial displacements
are both taken to be functions of space and time.

ξµ
(
x0, xj

)
≈ ξµ(0, 0) + ξi,0dx

0 + ξ0,jdx
j

+ gil
[
1

2
(ξl,j + ξj,l) dx

j +
1

2
(ξl,j − ξj,l) dx

j

]
,

{i, j, l} ∈ {1, 2, 3}, µ ∈ {0, 1, 2, 3}. (7)

For infinitesimal displacements this becomes

dξµ (xν) = gµλ
[
1

2
(ξλ,ν + ξν,λ) dx

ν

+
1

2
(ξλ,ν − ξν,λ) dx

ν

]
, {µ, ν, λ} ∈ {0, 1, 2, 3}. (8)

Putting this into covariant form allows for arbitrary co-
ordinate systems in the base space.

ξµ;νdx
ν = gµλ

1

2
(ξλ;ν + ξν;λ) dx

ν

+ gµλ
1

2
(ξλ;ν − ξλ;µ) dx

ν , {µ, ν, λ} ∈ {0, 1, 2, 3}. (9)

Expressing this in terms of the symmetry properties of
the displacement field,

ξµ;νdx
ν =

1

2
gµλ (ξλ;ν + ξν;λ) dx

ν

+
1

2
gµλ (ξλ;ν −ξλ;µ) dxν

= gµλσλνdx
ν + gµλαλνdx

ν (10)

with σ the symmetric tensor and α antisymmetric. The
relationship between the displacement and the metric
tensor, g, then follows. Assume a displacement field is
introduced into a locally flat region of space with coordi-
nates xµ and metric ḡ,

ḡ =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , xµ =
(
x0, x, y, z

)
(11)

so that

ds2 = ḡµνdx
µdxν . (12)

An infinitesimal displacement of the points would cause
two events with the coordinate separation dxµ to have a
new coordinate separation,

dx̄µ =
(
δµν + ϵξµ;ν

)
dxν , ϵ =

1

N
<< 1. (13)

A finite displacement field gives

dx̄µ = Limit
N→∞

[(
δµν +

1

N
ξµ;ν

)
N

]
dxν

=

(
Limit
N→∞

[(
I+

ζζζ

N

)N
)µ

ν

]
dxν

=
(
eζζζ
)µ
ν
dxν , (14)

where
(
eζζζ
)µ
ν

is the (µ,ν) component of the tensor ob-
tained by exponentiating the tensor whose components
are ζµν= ξµ;ν and I is the identity tensor.
The displacement can be considered either as new co-

ordinates for the points using the old metric, ḡ, or as a
new, transformed metric, g, using the old coordinates.

ds2 = ḡµνdx
µdxν −→ ḡµνdx̄

µdx̄ν

= ḡµν

((
eζζζ
)µ
λ
dxλ

)((
eζζζ
)ν
τ
dxτ

)
=
((
eζζζ
)µ
λ
ḡµν

(
eζζζ
)ν
τ

)
dxλdxτ

= gλτdx
λdxτ (15)
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This defines the relationship between spacetime displace-
ments and the metric tensor;

gλτ =
(
eζζζ
)µ
λ
ḡµν

(
eζζζ
)ν
τ
. (16)

Since these displacement fields, ζζζ, are linear operators,
and they satisfy the necessary sl(4,R) commutation re-
lationships, they are also quantum fields. A set of bases
are provided in terms of 4x4 real matrices, bi-quaternions
and Dirac gamma matrices [11].

1. Background Dependent vs Background Independent

Thus the transformed metric using the old coordi-
nates can be thought of as the consequence of using the
”wrong” coordinates, that consequence giving rise to ”fic-
titious” or inertial force fields, the usual view of gravity.
This gauge transformation of the metric tensor is a type
of factorization of the metric like using tetrads, but dif-
ferent in meaning, and based on general tensors. The
transformations among the -variant forms of ζζζ and its
covariant derivatives still use the base space metric since
they are measured locally, and with respect to the old
coordinates.

All the formulations of physical laws using the field ζζζ
and its base space metric are therefore ”background de-
pendent”; they rely on background structures [5] which
may vary from event to event. Their phenomenologies
are derived in that local space, depend on its metric, and
as such cannot be expected to have a generally covari-
ant form. They are flat-space laws. However, Eq. (16)
defines their relationship to the exact metric tensor and
therefore defines their participation in a generally covari-
ant ”background independent” theory, GR. That theory
now involves all the forces, at all scales, classical as well
as quantum fields.

The flat space laws are subject to quantization which
relies on their background dependency. These quantum
fields can be mapped into ζζζ based upon their analytic
and geometric properties, when expressed as functions
of the coordinates [11]. This gives them a classical pic-
ture [17]. Although the terms ”field” and ”displacement
field” are being used, no new ”fields” are being intro-
duced; these mathematical fields just describe the dis-
placement of events from their base-space coordinate lo-
cations in spacetime. Now the connections among the
Maxwell equations, spacetime flows and rotations, and
the metric tensor can be specified.

C. The Electromagnetic Field

The antisymmetric part of the displacement field in
Eq. (10) represents rotations and flows of events with
respect to the base space coordinate system. It is also an
exact tensor so automatically satisfies 2 of the Maxwell

equations. It is therefore taken to be (proportional to)
the electromagnetic field.

αµν =
1

2
(ξµ,ν − ξν,µ) =

1

2
ξ [µ,ν ]

≡ fµν ∝ Fµν = ηfµν , (17)

with the Maxwell equations as in Eq. (2) and the Carte-
sian components of the microscopic electromagnetic field
tensor and 4-vector potential represented as

Fµν =

 0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 , (18)

Fµν = ϕµ,ν − ϕν,µ ϕµ =
(
A0, Aι

)
, (19)

in Heaviside-Lorentz units. There is a problem with in-
terpreting the electromagnetic field as having flows. The
source equations seem to require sources (sinks) out of
(into) which whatever is flowing is appearing (disappear-
ing) [12]. This can be explained by imbuing spacetime
with a non-simply connected topology [18, 19]. Mathe-
matically that introduces a significant complexity. How-
ever it is unnecessary. Consider the electric field compo-
nent of fµν .

f0i =
1

2
(ξ0,i − ξi,0) = −eee ∝ −EEE = ∇A0 +

∂AAA

∂t
(20)

This ”flow” is a space-time rotation. It has two terms.
The time derivative represents a flow of spatial points
that has to go somewhere for any steady state. How-
ever for the electrostatic case, with no other matter or
energy present, the vector potential, AAA, or its divergence,
is chosen to be zero (Coulomb gauge). In the electrody-
namic case the radiation has an oscillatory (or transient
in the case of non-periodic induction) vector potential.
In neither case is a novel topology required. For an elec-
trostatic field,

EEE = −∇A0 ∝ −ξ0,i, (21)

sources (electric charges) cause a gradient of the time
displacement, A0. It appears that a clock placed near an
electric charge and then moved will be offset ahead or
behind depending upon the sign of the charge. This may
be true on a particular trajectory as determined by the
connections, which may have factors linear in E, but are
coordinate dependent. The metric ultimately determines
the ”rate” in any case. The size of any such offset or rate
effect is determined by the proportionality constant, η,
between eee and EEE. Magnetic fields correspond to purely
spatial rotations.
This completely geometrized electromagnetic field is

a gauge transformation on events under sl(4,R). Con-
sider the particular case where the symmetric tensor in
Eq. (10) is zero. In that particular gauge the antisym-
metric electromagnetic field tensor is like a Lorentz trans-
formation, with two important differences:
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1. It is a physical transformation of events (active
transformation), not coordinates (passive transfor-
mation) and

2. It is local not global. It varies from event to event.
That is, it is a second order gauge transformation.

That explains why EM theory is Lorentz-invariant; math-
ematically it is a local Lorentz transformation. However,
it is more than just that; the vector potential is primary
in real physical configurations of matter where symmetric
components may be present. In particular, if

σλν =
1

2
(ξλ;ν + ξν;λ) = 0 (22)

then ξµ is a Killing vector field so the metric possesses a
hidden symmetry. The symmetry the Killing field admits
is the electromagnetic field.

gµν = ḡµν ⇒ αµν =
1

2
(ξµ,ν − ξν,µ)

≡ fµν ∝ Fµν ̸= 0.
(23)

In this particular gauge, since σµν = 0, and αµν is
antisymmetric,

gµν = (eααα)
µ
λ ḡµν (e

ααα)
ν
τ = ḡλτ , (24)

so that the electromagnetic field is therefore another
gauge symmetry, one that is a diffeomorphism, but one
which leaves the metric itself unchanged. This means no
curvature and the electromagnetic field in this gauge is
not a source of gravity. This is not true in other gauges
like other EM fields or EM fields combined with gravity.
This will be seen below in the case of the The Aharonov-
Bohm effect.

D. The Already-Unified Gauge Field Hypothesis

Consider the generalization of Eq. (16) where the gauge
field ζ is any second rank tensor that is a linear combina-
tion of the generators of sl(4,R). ζ can be decomposed
into a tensor with zero divergence and one with zero curl
(anti-symmetrized derivative).

ζµν = ξµν + fµν , ξµν;ν = 0, f [µν,λ] = 0. (25)

This means f is closed and therefore exact, admitting a
vector potential

fµν = ϕ̄µ,ν − ϕ̄ν,µ (26)

and therefore

fµν;ν = jµ ̸= 0, σ [µν,λ] ̸= 0, (27)

in general. In addition, the vector field ϕ̄ can be decom-
posed into one with zero divergence and one with zero
curl.

ϕ̄µ = ϕµ + ḡµνην , ϕµ;µ = 0,

η [µ,ν] = 0 ⇒ ηµ = λ,µ. (28)

So any general tensor field ζζζµν can be derived from a
vector field, ϕ, that satisfies all the Maxwell equations
Eq. (2) and the Lorentz condition,

fµν =
1

2
(ξµ,ν − ξν,µ) = ϕ̄µ,ν − ϕ̄ν,µ

= ϕµ,ν − ϕν,µ, ϕµ;µ = 0, (29)

plus a tensor field, ξ, derived from tensor, vector and
scalar elements;

ξµν = χµν + (ϕµ;ν + ϕν;µ) + λ,µ;ν , (30)

where the tracelessness ensures the Lorentz gauge:

χµν
;ν = 0, χν

ν = 0, ḡµνλ,µ;ν = □λ = 0 (31)

It is also true that any second rank tensor can be de-
composed into an antisymmetric tensor, a traceless sym-
metric tensor and a multiple of the metric tensor. These
facts will be used to identify the physical fields that these
gauge fields represent. As will be shown, in each example
case below, the gauge field is traceless as appropriate for
an sl algebra.
It is the main hypothesis here that these displacement

fields, ζ,

ζµν = χµν + (ϕµ;ν + ϕν;µ) + λ,µ;ν + fµν , (32)

are what appear in the base space as force fields and
matter. More generally all linear combinations of the
generators of the sl(4,R) algebra are possible, including
real spinor representations of the group [11]. The sym-
metric fields generate gravity; scalar, vector and tensor
aspects. The antisymmetric vector field is EM as part of
the electroweak field. For a given configuration of matter
the equations of these fields are known: Klein-Gordon,
Maxwell, Dirac, Proca, etc. The gauge field fluctuations
must give rise to a gravitational temperature out of which
virtual particles are continuously created and destroyed.
This is the implementation of AAA.1. Thus EM is incor-

porated into GR simply by identifying it as that part of
the displacement gauge field solving the Maxwell equa-
tions. EM remains unchanged, as a flat space theory, and
so does the formalism of GR, as a covariant theory. The
way EM enters into GR however is very different. The
consequences of this will be dealt with below.
The physical significance of this invariance under the

group SL(4,R) is that the aether seems like an elastic
material. Spacetime can bend and stretch but not tear.
The accumulation at one event must be compensated at
another event. This crucial fact is at the heart of both
DM and DE. The fact that there is more physics hidden
within the metric than simply gravity is fundamental to
this theory. That is how it is ”already-unified”. All the
forces, including gravity, are slipped in underneath the
theory on the left hand side of the EFE. This is instead
of putting all the forces except gravity on the right hand
side. The matter tensor is the consequence of this pro-
cedure rather than a constraint upon the metric. No
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changes are made to the EFE except that it is now the
EFI - the Einstein Field Identity. This explains how the
geometry of space determines its matter content.

E. The Gravitational Field

1. The Gauge Field of (Local) Single-Component Tensor
Gravity

The symmetric part of the displacement in Eq. (10)
represents compressions (extensions or shears) of space-
time points. It is not an exact tensor so its components
involve the connections. This means the tensor can be
transformed away (locally) by a judicious choice of coor-
dinates. This is a key property of the gravitational field.
Also gravity is often depicted as stretches or compres-
sions of the ”fabric” of space and time. Identifying the
symmetric field with gravity is therefore consistent with
the prevalent picture. The exact connection between the
symmetric field, σµν , and gravity can be deduced from
the Schwarzschild solution to the EFE with Λ=0,

Gµν =
8πκ

c2
Tµν , (33)

The spherically symmetric, static, free space solution of
Eq. (33),

Gµν = 0, (34)

in spherical coordinates
(
x0, r, θ, ϕ

)
, in the region exterior

to some mass, M, is the metric

gs =


1− 2m

r 0 0 0
0 −(1− 2m

r )−1 0 0
0 0 −r2 0
0 0 0 −r2 sin2(θ)

 (35)

with

m =
κM

c2
. (36)

The EFE relates the metric tensor to matter content.
However, the general-relativistic matter density is dif-
ferent from the classical value for a given system. This
means the metric tensor must be known in order to calcu-
late the correct relativistic value. While it is true that the
Einstein tensor can be set to 0 and the equation solved,
this may not correspond to a physically realizable con-
figuration, at least not the one intended.

It is well established that there is something appear-
ing to be Dark Matter (DM) everywhere. Its signature
is found in the Cosmic Microwave Background (CMB),
galaxy rotations curves, and both stellar and galactic
clusters. There is strong evidence for Dark Energy (DE)
everywhere as well. Space is also filled with the residuals
of all the matter in it as shown below. From a quan-
tum perspective, regardless of the interpretation of the

Casimir effect [20], ”empty” space appears to be filled
with fluctuating zero-point fields. It is not known what
the impact of the vacuum fluctuations are on the met-
ric tensor. This is one of the major outstanding puzzles
in physics with a 120 order of magnitude discrepancy
between theory and observation. In any case G = 0 is
wrong for so-called empty space. Setting it equal to zero
may seem like a benign approximation, but it is what
produces singular solutions in both GR and QFT (point
particles) [1]. These issues are strong evidence of a fun-
damental lack of understanding of the nature of space.
It is also the cause of having to resort to unnecessary
”fields” to obviate action at a distance.
If there is a methodology for determining a gauge field

instead of a pre-specified stress-energy tensor, Tµν , these
problems may be solved. The requirements are that the
method should be covariant, treat all forces the same,
pass the same experimental tests as the Schwarzschild
solution and correspond to the classical equation in the
low-velocity and weak-field limit [21]. It is easy to infer
the appropriate gauge field for a spherically symmetric
mass.
The (0, 0) and (1, 1) components of the Schwarzschild

metric, gs, look like the first two terms in a series expan-
sion squared,

1− 2m

r
≈ (1 + ϵ)2, (1− 2m

r
)−1 ≈ (1 + ϵ)−2 (37)

with ϵ = −m/r. Comparing with Eq. (14) this can be
seen to be an approximation of

ζζζµν =

 Φ 0 0 0
0 −Φ 0 0
0 0 0 0
0 0 0 0

 , ζζζµν =

 Φ 0 0 0
0 Φ 0 0
0 0 0 0
0 0 0 0

 , (38)

with ζµν symmetric and

Φ = Φ(r) = −m
r
. (39)

So Eq. (16) gives the new metric for this gauge trans-
formation. For a static, spherically symmetric mass it is
given by

g =
(
eζζζ
)µ
λ
ḡµν

(
eζζζ
)ν
τ

=


e2Φ 0 0 0
0 −e−2Φ 0 0
0 0 −r2 0
0 0 0 −r2Sin2(θ)

 . (40)

So in this case the symmetric gauge field for gravita-
tion, ζζζµν , is simply the classical gravitational potential
energy per unit mass as measured in the base frame. The
mixed tensor, ζζζµν , is simply a scalar field times a scalar
generator of sl(4,R) [11], a single component tensor field.
Now that the metric of Eq. (40) is determined, Φ will be

Copyright ©2024 Brian Lee Scipioni. All Rights Reserved.



generalized to a gauge potential valid everywhere, not
limited to the exterior region of some mass.

This is not the only type of gravitational field – any
symmetric (or mixed) gauge, scalar, vector or tensor, re-
sults in a tensor, regardless of how it appears locally.

2. The Matter Tensor

Putting Eq. (40) into the EFE, Eq. (33), yields

Tµ
ν =

c2

8πκ
×

 Φ1(r) 0 0 0
0 Φ1(r) 0 0
0 0 Φ2(r) 0
0 0 0 Φ2(r)

 , (41)

where

Φ1(r) = −−1 + e2Φ(r) + 2e2Φ(r)rΦ′(r)

r2
,

Φ2(r) = −
e2Φ(r)

(
2Φ′(r) + 2rΦ′(r)2 + rΦ′′(r)

)
r

. (42)

3. The Laue Scalar

The trace of the matter tensor will be referred to as
the Laue scalar following Einstein [22]. It plays a cen-
tral role here as the invariant density. Its 4-volume in-
tegral, invariant under sl(4,R) metric gauge transforma-
tion, gives the rest mass of the particle formed by the
field’s self-interaction as shown below. The matter tensor
of Eq. (41) has some properties that can be deduced at
once from its form. The radial pressure is different from
the other 2 orthogonal stresses; this cannot be thought of
as a Newtonian fluid. Thus the TOV equation does not
apply. The radial pressure is negative (when the energy
density is positive), consistent with an attractive force.
The ratio of the radial pressure to the energy density is -1
— the hallmark of Dark Energy (DE). However, as will
be shown, the sum of all the stresses, and its gradient,
can be quite different.

4. The Mass

The invariant matter density given by the Laue scalar
is

ρ(r) = Tα
α =

c2 (Φ1(r) + Φ2(r))

4πκ
(43)

Integrating the scalar density, ρ(r)
√
−g, over a 4-volume,

τ , gives a scalar.

I(r) =

∫
τ

ρ (r′) 4πr′2dr′dt = 0, (44)

since the integrand is static. So integrating the scalar
density, ρ(r)

√
−g, over a spherical volume with radius,

r

1

2

3

4

5

6

ρ

FIG. 1. The invariant matter density (Laue scalar) for (κ =
c = m = 1).

r, gives an invariant, the rest mass, contained within the
volume.

M(r) =

∫
ρ (r′) 4πr′2dr′

=
rc2
(
1− e2Φ(r) − e2Φ(r)rΦ′(r)

)
κ

(45)

It should be noted that since T ̸= 0 there may be non-
isotropic pressure and pressure gradients causing non-
geodesic motion.

5. The Exterior Solution

Eq. (39) is the solution of Poisson’s equation,

∇2Φ = 4πρ, (46)

in the region outside the matter distribution where ρ = 0.
This is a local interpretation. It is a Newtonian poten-
tial valid everywhere except the origin, where there is a
singularity to prevent the empty space solution. From
the perspective of the EFE, Fig. 1 shows the matter as
continuous distribution of energy in covariant form.
Eq. (39) however is still just a better approximation;

the gauge field is still just an exterior solution. The co-
ordinate singularity at r=2m (the event horizon) is elim-
inated but the essential singularity at r = 0 still exists.
For r >> 2m this is the same metric as the Schwarzschild
solution, but now G ̸= 0 except in the limit r → ∞.
For Φ(r) as in Eq. (39), Eq. (43) gives the invariant

density which is shown in Fig. 1 for κ = c = m = 1.
For Φ(r) as in Eq. (39), Eq. (45) gives the enclosed

mass at a radius, r,

M(r) =

(
1− e−

2m
r

(
1 + m

r

))
rc2

κ
. (47)

The limit as r→ ∞ is

lim
r→∞

(M(r)) =
mc2

κ
=M. (48)

Fig. 2 shows that the mass increases smoothly from 0
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FIG. 2. The mass within sphere of radius, r (κ = c = m = 1).

toward its limit value quickly. The matter distribution
given by Eq. (45) completely accounts for the entire mass,
M. This is only valid if at each point, r, the mass appears
contained in some sphere rs ≤ r according to the base
frame. If the whole of Fig. 2 is taken, then this is an ex-
terior solution of the local description of a point particle.
There still is the singularity at the origin to remove in
order to satisfy AAA.2. So along with Eq. (46) the gauge
field is neither relativistic nor complete.

6. The Free Relativistic Interior Solution

The mass now has to be modeled is this simplified on-
tology. There is only one choice. Locally, this is a single
component, i.e., scalar field, Φ, as in Eq. (38) (A ten-
sor field with one independent component). According
to relativity, its equation of state is the Klein-Gordon
(K-G) equation and the solutions are bosons, which are
superposable. Consider the K-G equation for a spheri-
cally symmetric field.

□Φ+ k2Φ = 0 (49)

The static solution is

Φ(r) = ±me−kr

r
, (50)

and the corresponding dynamic solution for

□Φ+
(
ω2 + k2

)
Φ = 0 (51)

is

Φ(t, r) = mCos(ωt+ α)
e−kr

r
. (52)

Any potential that avoids the singularity provides a pic-
ture of matter as a self-contained region of gravitational
energy in a state bound by the mass’s own gravitational
attraction. The K-G field assumes only the relativis-
tic relation between mass and energy, and is therefore
”generic”. Any field, regardless of its equation of state,
has to satisfy the K-G equation on a component-by-
component basis in addition to any other state specific

3 4

r

-0.05

0.05

ρ

FIG. 3. Laue scalar for a Yukawa gauge field (κ = c = m = 1).
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0.2
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FIG. 4. Mass profile for a Yukawa gauge field (κ = c = m =
1).

conditions that are present. This is true regardless of
scale from elementary particles to galactic clusters.
Putting Eq. (50) into Eq. (43) and choosing the minus

sign gives the profile for the Laue scalar as shown in
Fig. 3.
Putting the same potential into Eq. (45) gives,

M(r) =
rc2

κ

(
mr

(
e−kr

r2
+
ke−kr

r

)
×
(
−e− 2me−kr

r

)
− e−

2me−kr

r + 1
) (53)

the mass contained within a radius, r as shown in Fig. 4.

The limit as r→ ∞ is

lim
r→∞

(M(r)) = 0. (54)

Exactly half the mass is positive energy and half nega-
tive energy. This is a remarkable property of the Yukawa
potential in GR. Since this is the static solution, is it also
a zero-energy solution. The binding energy is equal and
opposite to the mass-energy. For a dynamic solution,
which needs a time-dependent metric, the mass profile
oscillates like a standing spherical wave, but maintains
equal and opposite mass-energies at each instant.
From a quantum perspective Eq. (49) gives

□Φ+ k2Φ = −∇2Φ+ k2Φ = 0, (55a)

⇒ p̂2Φ = −k2Φ, (55b)
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so the field momentum and mass are imaginary since k
is real - a tachyonic field. The reason for this is that it
is a momentum operator on an unmoving, static, bound
field.

The same potential is the solution for the screening of
an isolated electric charge inside a dielectric. In that case
oppositely charged particles in the medium are shifted
toward the isolated charge having the effect of smearing
the charge out into a Yukawa-field charge density profile.
This is because the opposite charges attract. What is
shown in Fig. 3 is gravitational screening due to opposite
gravitational fields that repel. Apparently, as the space-
time fabric is concentrated toward the origin it does so at
the expense of the surrounding space which is stretched.
Both regions are stabilized by their self gravitation, but
repelled from each other. The net effect is a region of
positve and negative energy with zero total gravitational
charge, but inertial mass, k.

7. The Complete Relativistic Solution

There are 3 ways to get this solution.

1. Add the interior solution to the exterior one.

Gauge fields can simply be added. Adding the free
relativistic (interior) solution and the far field (ex-
terior) solution together, the necessary potential is
obtained:

Φ(r) = −m
(
1− e−kr

)
r

. (56)

2. Integrate the scalar field.

For another interpretation of Eq. (56) consider the
normalized scalar field ψ,

ψ(r) =

√
k

4π

e−
k
2 r

r
(57)

Then the expected value of m within a sphere of
radius, r, in such a state is

< m> =

∫ r

0

(
ψ(r)†mψ(r)

)
4πr2dr

= m
(
1− e−kr

)
, (58)

so that the Newtonian potential Φ as in Eq. (39)
becomes

Φ(r) = −< m >

r
= −

m
(
1− e−kr

)
r

. (59)

3. Use a Lagrangian density with an interaction term
describing a mass interacting with its own gravita-
tional field.

Eq. (56) is also obtained by solving the K-G equa-
tion in the classical gravitational potential of the

2 4 6
rHamL

-8.´10
23

-4.´10
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4.´10
23

ΡHkg�m3L

FIG. 5. Density as a function of radial distance for a neutral
Higgs-like boson.
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FIG. 6. Laue scalar for the complete gauge field for a Milky
Way model (m = 5.6 × 10−5 kpc, k = 2.2/6) kpc−1).

mass by adding an interaction term to the La-
grangian density for the K-G equation [23]. This is
a material particle (region of spacetime) interact-
ing with its own gravitational field with coupling
constant k.

It is this interaction that couples the inertial
mass to the gravitational mass of matter.

This works in an analogous way to the way the
Higgs field couples to the electroweak field.

L =
1

2
Φ′(r)2 − 1

2
k2Φ(r)2 + Lint (60)

with

Lint = V (r) Φ(r), V (r) = −k2m
r

(61)

yielding

□Φ(r) + k2Φ(r)− V (r) = 0 (62a)

⇒ Φ(r) = −m
(
1− e−kr

)
r

. (62b)

Putting Eq. (56) into Eq. (43) gives the profile for the
Laue scalar as shown in Fig. 5 or Fig. 6 for a Higgs-sized
particle or a galaxy, respectively.
Putting the same potential into Eq. (45) gives,

M(r) =
rc2

κ

(
mr

(
ke−kr

r
− 1− e−kr

r2

)
× e−

2m(1−e−kr)
r − e−

2m(1−e−kr)
r + 1

)
,

, (63)
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FIG. 7. Enclosed mass as a function of radial distance for a
neutral Higgs-like boson.
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FIG. 8. Mass profile for the complete gauge field for a Milky
Way model (m = 5.6 × 10−5 kpc, k = 2.2/6 kpc−1).

the mass contained within a radius, r for the same 2
objects as shown in Fig. 7 or Fig. 8.

The limit as r→ ∞ is

lim
r→∞

(M(r)) =
mc2

κ
=M. (64)

a. Mass Eigenvalues The mass is also a parameter
of the gauge field. It therefore gives rise to a non-linear
eigenvalue equation. It is remarkable that those 2 masses
are equal for any value of the mass or any value of the
parameter k, in the case of a real scalar gauge field. That
is consistent with the fact that all real scalar fields must
solve the Klein-Gordon equation. It is an hypothesis that
all particle masses of the standard model can be gener-
ated this way. This is true of both gauge fields and spinor
fields. That should produce a spectrum of mass values
for each algebraically distinct type of gauge field. The
SL(4,R) algebra, along with its inner and outer auto-
morphisms, covers the Standard Model [11]. Therefore
this is a methodology for determining the masses of the
elementary particles from first principle.

Again from a quantum perspective, Eq. (56) gives

□Φ+ k2Φ− V = −∇2Φ+ k2Φ− V = 0, (65a)

⇒ p̂2Φ = V − k2Φ, (65b)

so in the local frame the field momentum is still imagi-
nary since k is real and V is negative.

Putting the potential, Eq. (56), into Eq. (40) and tak-
ing the limit shows that the metric tensor is finite at the

7 8
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0.00001
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FIG. 9. Negative Laue scalar and crossing points for the com-
plete potential in Eq. (56) (κ = c = m = k = 1).

origin as it should be.

Limit
r→0

(g) =


e−2mk 0 0 0

0 −e2mk 0 0
0 0 0 0
0 0 0 0

 . (66)

It was stated above that AAA.1 and AAA.2 were not en-
tirely independent. Even if the goal here were not to
eliminate singularities, Eq. (56) is the inevitable result of
treating the classical potential as a GR gauge field. The
Laue scalar and mass profiles are similar to those shown
in Figs. 6 and 8; the density is still screened and goes
through 0 and becomes negative - in this case decaying
indefinitely.
Each mass is surrounded by a shell of negative energy

in the case of a typical galaxy, giving rise to a bump in
the mass curve, linked to the bump in the rotation curve
through Renzo’s Rule [24]. However, based upon the
values of k and m, the density may not become negative,
or cross the axis a second time in a positive-negative-
positive pattern as shown in Fig. 9. The total mass re-
mains the same while the singularity is eliminated. This
is because the Yukawa term adds equal amounts of posi-
tive and negative energy.
This is scalar gravity returning [25], but now in ten-

sor form that agrees with experiment, as shown below,
wrapped in GR.
The Yukawa potential part of Eq. (56) represents a

”nuclear” force while the other term, the classical gravi-
tational potential per unit mass, -m/r, is just the resid-
ual. Note the nuclear part is repulsive; it prevents col-
lapse. However, the covariant expression of this potential
through the Einstein equation provides a more compli-
cated picture.
That energy appears in covariant form as the Laue

scalar, Tα
α.

So the mass is therefore composed completely of mat-
ter, or gravitational field, or spacetime(displacements);
they are all equivalent satisfying AAA.1.
This demonstrates the consequence of the theory. Pre-

viously the rule was that the right side of the EFE con-
tains all non-gravitational sources of energy, hypothe-
sized in covariant form. Now it contains only gravita-
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tional sources of energy, directly proportional to the co-
variant Einstein tensor.

This is in contrast to Φ(r) = 1
2Log(1−

2m
r ) which gives

the Schwarzschild solution. In that case the integrated
mass is M, but it does not depend on r by Eq. (45). The
Laue scalar is 0 and the solution is only valid outside the
mass, which must show up as a discontinuity in the Laue
scalar gradient at some point. That solution also allows
singular black holes, where the entire mass is in gravita-
tional field energy, but the field energy has no generally
covariant form. Traditionally, non-covariant expressions
have been derived for the gravitational field energy. In
[26], for example, when such an expression is integrated
over space (in isotropic coordinates), the total rest en-
ergy, Mc2, is reached at m/2 instead of at 0. Such a
result is bizarre, albeit non-covariant.

It has been argued that such a solution state exists far
in the future for a collapsing body and is never actually
attained in a finite time, as referenced from the outside.
However it is still a solution, therefore allowed, and it is
still singular.

8. Applicability of the Solution

The gauge potential in Eq. (56) is only applicable to
regions with no strong or electroweak forces: black holes,
galaxies in aggregate, spin 0 elementary particles and the
exteriors of bulk matter. Although the weakest of forces,
gravity works down to arbitrarily small scales; if enough
energy is present in a small enough volume, it will col-
lapse into a particle without singularity.

This solution is valid for masses of all sizes, provided
the symmetry requirements of the metric tensor are sat-
isfied. In particular this means that for normal aggregate
matter like lead balls, stars and galaxies, the proper sum-
mations (integrals) are required as shown below.

9. Aggregated Matter

Assume for black holes

k =
c2

κ m
, (67)

the inverse geometric mass. Then the parameter, k, can
be put in a form that covers all mass scales,

1

k
=

ℏ
mc

, m < mp (68a)

1

k
=
κm

c2
, m > mp. (68b)

1/k is a minimum at the Planck mass. Below that the
behavior is quantum and the wavelength increases with
decreasing mass. Above that the characteristic length
also increases but the wave nature is now hidden within
the geometric mass and so the behavior is classical.

For the Equivalence Principle (EP) discussion below,
the distinction will be made between the gravitational
mass, mg, and the inertial mass, mi. In Eq. (50), m
is clearly the gravitational mass. For quantum-domain
fields

k =
mic

ℏ
, (69)

the inverse Compton length. It derives from the free K-
G equation so it is clearly (proportional to) the inertial
mass. For elementary particle-sized masses this can be
put into a more scalable form — that explicitly shows
the coupling between gravitational and inertial masses:

Φ(r) = −m
(
1− e−kr

)
r

= −mgmi

mp
2

(
1− e−kr

)
kr

,

mg =
mc2

κ
, mi =

ℏ k
c
, mp =

√
ℏ c
κ
,

(70)

mp being the Planck mass.
The r-equation of geodesic motion for an initially sta-

tionary particle gives

d2r

dt2
= −c2e−µ

4(1−e−kr)
kr µ

(
1− e−kr

kr2
− e−kr

r

)
,

µ =
mgmi

mp
2
.

(71)

If mg is allowed to be negative, mg < 0, then the accel-
eration is in the positive r-direction, that is, repulsive.
This is assuming that a positive test mass travels in a
positive timelike direction on the geodesics near m. Also
of note is the asymmetry in the exponential factor for
larger masses which falls off rapidly. This is shown in
Fig. 10
For elementary particle-sized masses, |m| << 10−8kg,

this happens at many orders of magnitude below the par-
ticle wavelength due to the geometric mass in the expo-
nent. The acceleration is symmetric with a limited cutoff.
For large masses, |m| >> 10−8kg with m < 0, the

acceleration is unlimited for small r. Note that this refers
to a large single mass, if such exists, not normal bulk
matter made up of an aggregate of atoms. Aggregate
matter does not present this behavior as shown below.

III. EXAMPLES

A. Gravitational Radiation

Take the tensor χµν in Eq. (32) to be symmetric, ap-
propriate for a gravitational field, and solve Eq. (31) with
base metric and coordinates as in Eq. (11). With

χµν =

 0 0 0 0
0 0 0 0
0 0 ψ1(t, x) η1(t, x)
0 0 η2(t, x) ψ2(t, x)

 , (72)
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FIG. 10. Acceleration due to + and -(dashed) masses and
asymmetry for larger masses.

Eq. (31) is solved since the y- and z-derivatives are ap-
plied to functions of t and x only. These functions need
to solve the K-G equation,

□χµν + k2χµν = 0, (73)

with k=0 (mi=0) for a wave solution (below k is wave
number),

□χµν = 0 ⇒ χµν = γSin (kµx
µ + α) ,

kµ = (ω, k, 0, 0), kµk
µ = 0 ⇒ ω = ck (74)

Also from Eq. (31) χµ
ν is traceless, and choosing ψ and

η to have the same phase,

χµ
µ = 0, α = 0 ⇒ ψ2 = −ψ1

, η1 = η2 = γSin (kµx
µ) (75)

giving

χµ
ν =

 0 0 0 0
0 0 0 0
0 0 ψ(t, x) η(t, x)
0 0 η(t, x) −ψ(t, x)

 ,

ψ(t, x) = η(t, x) = γSin (kµx
µ) . (76)

Using the polarization matrices

P1 =

 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 , P2 =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , (77)

these two solutions can be written as

Φ1 = γP1Sin(ωt− kx),Φ2 = γP3Sin(ωt− kx). (78)

Since

P1 · kkk = P2 · kkk = 0, (79)

these tensor waves are transverse as well as traceless
(TT-gauge). Putting these TT-gauge fields into Eq. (16)
yields

g1 =

 1 0 0 0
0 −1 0 0
0 0 −e2η 0
0 0 0 −e−2η

 ,

g2 =

 1 0 0 0
0 −1 0 0
0 0 −Cosh(2η) −Sinh(2η)
0 0 −Sinh(2η) −Cosh(2η)

 . (80)

These metrics are very different from the ones obtained
from the linearized theory, but agree to first order in γ.
Putting either of these two metrics into the EFE gives
the matter tensors

Tµν =
γ2ω2Cos2(ωt− kx)

4πκ

 −1 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

 ,

Tµ
ν =

γ2ω2Cos2(ωt− kx)

4πκ

 −1 1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 . (81)

Interestingly, Tµν is the exact same result as the TT-
gauge Isaacson pseudotensor [27] obtained from the lin-
earized theory. As an aside, some alternate theories of
gravity also give that Isaacson pseudotensor [28]. Now
however it is a true covariant tensor and not limited
to high frequencies for consistent interpretation. This
is gravitational energy expressed in covariant form; no
need for pseudotensors. This is only possible because
now gravity is treated on the same footing as the other
forces, as a gauge field. Matter/energy is created in a lo-
cale as the wave moves through compression/shear then
destroyed. Tµ

ν is also traceless so that the negative energy
density created is compensated for by an equal amount
of negative pressure giving zero rest mass. The distortion
appears to move but does not - only the wave, so it can
transport the energy at the speed of light. This exempli-
fies that fact that gravitational energy has been moved to
the right side of the equation (identity actually). This is
achieved, in like manner with the other forces, by putting
their gauge fields on the left side. This is an answer to
whether gravitational radiation can carry or transfer en-
ergy. It does. Also it is a source of gravity as expected
(G̸=0). However EM radiation is not, as shown below.

B. Electromagnetic Radiation

Proceeding as above, take the antisymmetric tensor
fµν in Eq. (32) only this time solve it for the vector equa-
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tions Eq. (29) in charge- and current-free space where

fµν;ν = jµ = 0. (82)

This gives

□ϕµ = 0, (83)

once again the K-G gauge equation for a massless field.
Instead of a polarization tensor as above, there exists
a polarization vector, eee, with 2 possible orientations for
transverse plane wave solutions.

ϕ1 = eeeASin (kµx
µ) , kµ =

(ω
c
, kx, ky, kz

)
,

kµk
µ = 0 ⇒ ω = c|k| (84)

ey =

 0
0
1
0

 , ez =

 0
0
0
1

 (85)

Taking the z-polarization for example,

ϕµ = (0, 0, 0, aSin(ωt− kx)), (86)

the EM field is, with χ(t, x) = akCos(ωt− kx)),

Fµν =

 0 0 0 χ(t, x)
0 0 0 −χ(t, x)
0 0 0 0

−χ(t, x) χ(t, x) 0 0

 , (87)

and the gauge field is

ϕµ;ν =

 0 0 0 0
0 0 0 0
0 0 0 0

χ(t, x) −χ(t, x) 0 0

 . (88)

Putting this gauge field into Eq. (16) yields the metric,

g =

 1− χ(t, x)2 χ(t, x)2 0 χ(t, x)
χ(t, x)2 −1− χ(t, x)2 0 χ(t, x)

0 0 −1 0
−χ(t, x) χ(t, x) 0 −1

 . (89)

Putting this metric into the EFE gives the matter tensor,

Gµν = Tµν = 0. (90)

The metric tensor shows changes in spacetime intervals
as the wave passes, but the wave is not a source of gravity.
Fig. (11) shows the spatio-temporal distortions along the
plane-wave front for the eigenvalues of this metric. The
shape of these curves indicate of a region of space rotat-
ing clockwise, then counterclockwise in the x-z plane as
the wave propagates along the x-direction. The energy
changes hand between the electric field(rotating) and the
magnetic field(rotated). There is no curvature and no
gravity because this is a traveling rotation - unlike the

π

x

-1

1

Amplitude

FIG. 11. Metric distortions of time (dotted) and space in the
propagation direction (solid) and z (dashed).

case for gravity waves where there is a traveling compres-
sion/shear.
This is a different gauge than in Eq. (24) where the

metric was unchanged, but the result is the same - no
curvature. This had to be true, since it was determined
above that anti-matter generates anti-gravity and repels
matter. If a system composed of an equal and symmet-
ric amount of both, like positronium, created no gravity,
then it would also be true for the photons that resulted
from its annihilation. Both systems however still follow
spacetime geodesics, so this result does not exempt EM
radiation from the well documented redshift in a gravi-
tational field of another mass or deflection by a massive
object. What is interesting is that this result - that had to
be true for logical consistency - arose automatically from
the methodology. Although it is true for radiation fields
of the gauges considered above, it is not true in general.
Electromagnetic fields can be a source of gravity as shown
below in the section on the the Aharonov-Bohm effect.
The fact that the energy present does not cause curvature
is explained by the fact that the electric field component
contains positive energy and the magnetic field negative
energy, also shown in the next section.
Historically, the EM stress-energy tensor is taken to be

the matter tensor, T, asserting that the mass equivalent
of the field energy is a gravitational source and therefore
belongs on the right hand side of the EFE. The reason
for this is the ansatz that T should contain all sources of
energy, in an assumed covariant form, excepting of course
gravitational energy. This is an unconfirmed assumption.
All tests of GR involve gravitational fields created by
masses. One implication of this is that the radiation
component of cosmic expansion in ΛCDM models should
set Ωγ = 0, affecting cosmological time scales. Also, in
the regime of comparable energy densities the evolution
of the temperature will no longer be dictated by Ωγ.

Equivalence Principle

This theory does not require m < 0 nor the gauge
chosen above for the EM field. But if so, the equivalence
principle would obviously need modification. If photons
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have no gravitational charge or if matter and antimatter
repel each other, the ratio between gravitational mass
and inertial mass would then take one of three values,

mg

mi
= (−1, 0, 1) (91)

for antimatter, EM radiation and matter, respectively.
The sign changes would go with the gravitational mass;
the inertial mass of the antiproton has already been
measured to high accuracy and is in agreement with
that of the proton [29]. Measurements of antihydrogen
in Earth’s gravitational field are ongoing at the LEAR
project and have shown that antihydrogen falls down,
toward Earth [30]. This requires explanation:

1. Strictly speaking, neither inertial nor gravitational
masses are defined in GR [31]. Both arise from
different applications of the Correspondence Prin-
ciple: a simple Newtonian analysis does not suffice.

2. Consider a ”dust” model, appropriate to non-
interacting clouds of atoms. The divergence-less
property of the Einstein tensor guarantees the den-
sity of such clouds drops out of the equations of
motion. The motions are determined solely by the
connections [32], which are dominated by Earth’s
gravity in this case. An anti-Earth would repel an
Earth, or an anti-H would repel an H, for exam-
ple. However, the gravitational potential gradient
at the ”surface” of a proton due to the Earth is
roughly 108 times that of the proton itself. A small
test mass follows geodesics regardless of its mass.

It is therefore predicted that an asymmetry would be
measured in the free fall of H and anti-H at roughly 2
parts in 108.

C. Massive Charged Particle

Combining a static antisymmetric E-M field with a
symmetric gravity field gives according to Eq. (32)

ζζζµν = χχχµν + fffµν . (92)

In spherical coordinates

ζζζµν =

 Φ −E 0 0
E Φ 0 0
0 0 0 0
0 0 0 0

 , ζζζµν =

 Φ −E 0 0
−E −Φ 0 0
0 0 0 0
0 0 0 0

 ,

(93)
is the appropriate gauge for a spherically symmetric
charged particle. It also corresponds to a complex scalar
field as in Eq. (141) below. Putting this into Eq. (16)
yields the metric tensor, g, which in turn gives the Ein-
stein tensor, G. For E(r) = 0 the density and mass are
the same as in Figs. 3 and 4. For Φ(r) = 0 however,
G = 0. This explains the observational fact that charged
particles without gravitational mass do not exist.

D. The Aharonov-Bohm Effect

The above methodology can now be used to calcu-
late the gravitational effects of electromagnetic fields
and show their relationship to quantum theory. The
Aharonov-Bohm Effect is a good example. It has been
stated that this effect causes the vacuum to have struc-
ture [33] in that region which is free of magnetic field,
but has a non-zero vector potential, AAA. It will be shown
that this ”structure” is a displacement of events given
by AAA, whose unit is the meter as in Table 1. This dis-
placement results in a spacetime shear and an associated
gravitational field. The idealized experimental setup re-
sults in a clean separation between regions of space with
EM fields and regions with a vector potential but no EM
field.
Consider a long cylinder of radius, ρ, uniformly mag-

netized with magnetic field, BBB, in the z-direction. The
cylinder’s mass, and gravitational field due to its mass,
are ignored. The cylindrical coordinates, x̄µ, and metric,
ḡ, in the laboratory frame are

x̄µ = (t, r, θ, z), ḡ =

 1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −1

 . (94)

The EM field and vector potential, Φ, are as follows.
[33]

Inside the cylinder,

Fµν =

 0 0 0 0
0 0 Br 0
0 −Br 0 0
0 0 0 0

 , (95)

Φµ =

(
0, 0,

B

2
, 0

)
,

Φµ =

(
0, 0,−Br

2

2
, 0

)
.

Outside the cylinder,

Fµν =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,Φµ =

(
0, 0,

Bρ2

2r2
, 0

)
,

Φµ =

(
0, 0,−Bρ

2

2
, 0

)
. (96)

The physical components of the vector potential out-
side are

AAA =

(
0, 0,

Bρ2

2r
, 0

)
. (97)

It has dimensions of length, and since its curl is zero
outside it can be written as the gradient of some scalar
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function, χ :

∇∇∇×AAA =∇∇∇×∇∇∇χ = 0 ⇒ χ =
B ρ2

2
θ. (98)

Using Eq. (17) to change to the dimensionless field, b,
outside the gauge field is given by,

ϕµ;ν = ζµν =


0 0 0 0

0 0 − bρ2

2r 0

0 − bρ2

2r3 0 0
0 0 0 0

 , (99)

and the metric tensor is given by Eq. (16),

gµν =
(
eζζζ
)µ
λ
ḡµν

(
eζζζ
)ν
τ

=


1 0 0 0

0 −Cosh
(

bρ2

r2

)
rSinh

(
bρ2

r2

)
0

0 rSinh
(

bρ2

r2

)
−r2Cosh

(
bρ2

r2

)
0

0 0 0 −1

 . (100)

This is the metric for a shear in the r-θ plane with a
maximum value at the cylinder boundary, r=ρ.

From the EFE, Eq. (33),

Tµ
ν =


−

b2ρ4c2Cosh
(

bρ2

r2

)
4πr6κ 0 0 0
0 0 0 0
0 0 0 0

0 0 0 −
b2ρ4c2Cosh

(
bρ2

r2

)
4πr6κ

 .

(101)
There is therefore gravitational energy outside the

magnet due to the magnetic field inside the magnet.
There is a negative energy density, and positive stress
in the z-direction equal in magnitude to the density. T
is not traceless, and the trace is negative. This means
there would be a repulsive gravitational force in the r-
direction in the region that is outside the magnet and
outside most of the gravitational field. Integrating the
Laue scalar over the exterior region, and multiplying by
c2 gives the total energy:∫ ∞

ρ

Tµ
µc

2
√

−∥g∥2πzdr

=
z c4(−1 + Cosh(b)− bSinh(b))

2κ
. (102)

(1− Cosh(b) + bSinh(b)) =
b2

2
+O(b)4 (103)

Historically it was the fact that the EM field could
store energy that argued for its reality. Here it is stored
in the gravitational field as spacetime displacements; an-
other reason no additional fields are necessary.

The gravitational energy stored does not depend at all
on ρ, the radius of the magnet. This is because the space

of a cross-sectional disk of the magnet is rotated as a unit
with no shears within. The space outside has a higher
energy density Eq. (101) with increasing ρ, but that is
exactly offset by the fact that there is less of it. That
is, the bottom limit of the integral increases. All of the
energy of the magnetic field does not serve as a source of
gravity; T is 0 inside. The outside energy must arise as
some of the work needed to establish the field.

Picture for Quantum Theory

This gives quantum fields a ”picture”. AAA is a physical
displacement of points in space. In the covariant deriva-
tive

p̂→ (p̂− eAAA) , (104)

the momentum operator, p̂, is the generator of transla-
tions. The covariant derivative indicates that the trans-
lation has to be shifted to compensate for the physical
displacement of spacetime by the vector potential, AAA, to
obtain the net translation [34]. Incidentally, the zeroth
component of the covariant form of the covariant deriva-
tive,

p̂0 →
(
p̂0 − eAAA0

)
, (105)

indicates the energy operator as the generator of tempo-
ral translations with the shift due to the scalar potential.
This is consistent with the above description, Eq. (21),
of the electric field as the gradient of a time translation.
So it is clear than uncertainties in AAA inherit directly from
uncertainties in the coordinates so their commutation re-
lations inherit as well.
Concomitantly the quantum field undergoes a local gauge
transformation,

Ψ → eiΛ Ψ = e
i e χ
ℏ Ψ, (106)

so that the phase angle, Λ, is

Λ =
e B ρ2

2 ℏ
θ =

B π ρ2

h/e
θ =

n

2
θ, (107)

where n is the number of quanta of magnetic flux through
the cylinder.
It is usually stated that Λ is a rotation in the ”internal

space” of the field. Here it is clear that the displacements
are spatial and these are real, physical rotations in the
r-θ plane. Until now, solutions to the K-G equation were
used above for event displacements regardless of whether
or not they were macroscopic fields or quantum fields.
That is because it does not matter. This point of view is
a consequence of AAA.1. This example shows that quantum
fields are therefore made of the same ”stuff” as spacetime,
or gravitational fields, etc. The only difference is that for
small scales the fields need to be treated as operators
and measurement theory comes into play. Besides, since
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there is no prevailing ”picture” of quantum fields, viewing
them as spacetime amplitudes, densities, displacements,
etc. cannot matter as long as they obey the same equa-
tions. However, this can provide a great insight into their
nature and connection to classical theory and unification.
The key foundational point is that the equations are on
gravitational gauge fields (in the sense of Eq. (32)); they
are flat space equations. Their incorporation into GR is
through Eq. (16). EM has served as a bridge between
GR and QT.

Of course the gauge transformation, Eq. (106) is on
a complex function, Ψ. There is nothing special about
using the complex numbers in quantum theory. Eq. (106)
is exactly equivalent to

Ψ =

(
ϕ
χ

)
→
(

Cos(Λ) −Sin(Λ)
Sin(Λ) Cos(Λ)

)(
ϕ
χ

)
= eiΛΨ (108)

separating the complex equation into coupled real equa-
tions.

E. Galaxies

The most compelling evidence for this model of grav-
ity comes from galaxies. This one simple model gives
Dark Matter(DM), Dark Energy(DE), Baryonic Tully-
Fisher Relation(BTFR), Renzo’s Rule, (Modified New-
tonian Gravity(MOND), HSB and LSB galaxies and the
Universal Rotation Curve(URC).

1. The Geodesics

The following are geodesic equations of the metric in
Eq. (40) for circular orbits where v = ω r, dr = 0.

d2t

ds2
= −2

dt

ds

dr

ds
Φ′(r) = 0,

dt

ds
= γ, (109a)

γ =
1√

e2Φ(r) − r2ω2

c2

=
1√

e2Φ(r) − v2

c2

, (109b)

d2r

ds2
= γ2

d2r

dt2
=
γ2v2e2Φ(r)

rc2
− γ2e4Φ(r)Φ′(r) = 0,

(109c)

v2 = r c2e2Φ(r)Φ′(r) (109d)

2. Baryonic Tully-Fisher Relation

Combining Eq. (45) and Eq. (109d) we see that

c2
(
1− e2Φ(r)

)
− κM(r)

r
= c2e2Φ(r)rΦ′(r)

= v2. (110)

Interpreting the velocity, v, as the speed of the circular
orbits of the baryons, the terms on the left of Eq. (110)
can be thought of the total matter minus the DM which
is the total baryonic matter. There is no DM per se, only
a covariant gravitational field within which the baryonic
matter is embedded. In approximation for small Φ(r) it
is

c2
(
1− e2Φ(r)

)
− κM(r)

r
≈ 2κM(r)

r
− κM(r)

r

=
κMb(r)

r
= v2 (111)

Squaring both sides of Eq. (111) gives

κMb(r)

(
κMb(r)

r2

)
= v4 (112)

This starts to happen when r ≈ µ/k and the rotation
curve starts to flatten out. At this point the Newtonian
gravitational acceleration is at the MOND value, a =
1.24± .14× 10−10ms−2 [35],

κMb

(
k2κMb

µ2

)
= v4f , (113)

and

κMb = Av4f , A = .8/a, (114)

the BTFR.

3. Universal Rotation Curve

The Universal Rotation Curve (URC) of spiral galaxies
is a method of normalizing the shape of the curves by a
scale length [36]. In this current model of rotation curves
it is simple. The potential

me−kr

r
=
kme−kr

kr
=
µe−u

u
, u = kr, µ = km (115)

4. Dark Matter

The K-G equation is linear in the gauge fields so they
can be added for aggregates of baryonic matter like a
galaxy. The mass profile in Fig. 8 is similar to a typ-
ical galaxy rotation curve. This explains the puzzle of
the correlation between total baryonic matter/luminosity
and DM. DM is just the normal gravitational field of the
galaxy as a whole plus the aggregate baryonic matter
when the gauge potential is given by Eq. (56). The flat-
tening of the rotation curve is due not to extra DM, but
to the negative energy shell of the gravitational field of
the normal baryonic matter. The rotation curve of the
Milky Way as shown in Fig. 12 is patterned after that
given in [37]. As has been shown, it is not necessary to
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FIG. 12. Rotation curve model of the Milky Way.

”engineer” rotation curves as is normally done. Never-
theless, it can be done that way using the potential as
given by Eq. (56) rather than the popular NFW density
profile.

The potential in Eq. (56) is matter whether baryonic
or not. The K-G equation is linear in the gauge fields so
they can be added for aggregates of baryonic matter. For
non-baryonic matter, it is just pure uncondensed mat-
ter, massive covariant gravitational field, or Dark Mat-
ter. Consider a solution corresponding to the baryonic
matter in a typical galaxy, embedded in a larger mass of
non-baryonic matter (Dark Matter):

Φ(r) = −m+

(
1− e−k+r

)
r

−m−

(
1− e−k−r

)
r

. (116)

Assuming circular orbits [38], the r equation of motion
for the metric in Eq. (40) is

d2r

ds2
=
e2Φ(r)rω2

c2
− e4Φ(r) Φ′(r) = 0. (117)

giving

v2 = r2ω2 = c2re2Φ(r)Φ′(r). (118)

With the potential in Eq. (121), Fig. 13 shows generally
qualitative fits for this gauge field to actual rotation curve
data for the galaxies M33 and NGC 4157, assuming a
baryonic mass content of 20 × 109M⊙and a diameter of
60,000 LightYears for M33. The NGC 4157 curve is fit.

The typical flat velocity profile is seen farther out on
the spiral. It is common that galactic rotation curves are
similar to the one for NGC 4157 in that there is a dip
after the first peak before the slope increases again. It is
due to the dark matter taking over from the more cen-
tral baryonic matter. From simple Newtonian mechanics
any matter distribution that increases linearly from the
origin (inverse square density) gives circular orbits with
constant speed. The mass distribution in Fig. 2, for ex-
ample, is approximately linear over a wide range of radii.
However, this is not the source of linearity here.

Most DM models use the TOV equation, but in the
Newtonian limit, such as [39]. If the potential in Eq. (56)
were just treated as Newtonian, none of the interest-
ing features of the mass profiles would obtain: asymp-
totic flatness, humps and dips, mass discrepancies, non-
Newtonian behavior and others. These are GR effects.
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FIG. 13. The potential in Eq. (121) provides a qualitative fit
for actual data from M33 and NGC 4157.
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FIG. 14. Rotation vs Concentration.

Most importantly it solves the puzzle of the connection
of the excess mass with light. The DM is the mass of
the (covariant) gravitational field attached to the visible
(baryonic) mass. This is currently the strongest ”evi-
dence” for this gauge field hypothesis.

It is clear that the stress-energy does not describe a
Newtonian fluid: the radial pressure is different from
the two orthogonal stresses. The TOV equation is not
appropriate, but this is what is to be expected from a
spherically symmetric, static DM halo [39].

Under Renzo’s Rule [24], the mass profiles mimic the
rotation curves. Therefore these mass profiles show that
all the various galaxy morphologies can be described by
just the one potential in Eq. (56). Its 2 parameters,
m and k, map to vf and the concentration respectively.
Large ks correspond to HSB galaxies, small ones to LSB
galaxies with all types in between. It can also map to
the double-humped morphology which is indicative of a
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FIG. 15. Rotation curve showing flatness due to offsetting
contributions from baryonic (dotted) and DM (dashed) com-
ponents.

bulge [24]. In this case, 2 exponential terms with dif-
ferent ks are needed. That hints at bulges arising from
mergers with the original halo intact.

The (1−e−kr)
r feature of DM halo potentials provides a

natural core. This avoids the cuspy halo problem that
plagues traditional halo models for HSB galaxies. Ap-
plied to the LSB DDO 154, it predicts a flattening of the
rotation curve above 10 kpc. measurements have shown
a dip around 8 kpc leading to the conclusion that the
edge had been reached [40]. This model indicates the dip
is merely the pre-flat hump common to many galaxies.

Fig. 15 shows rotation curves for the baryonic matter
alone, the DM alone and their combination. The flat
velocity profile is seen to be due to an increasing con-
tribution from DM which precisely offsets a decreasing
profile from the baryonic matter. This fine-tuning can
be obtained by adjusting the curvature parameter, k, as
well as the dark matter ratio. Fine-tuning is also used in
the parameters of the NFW density profiles usually used
to obtain matches also [41]. There is a big difference here
though. The NFW is a purely phenomenological profile
used in simulations to achieve the necessary density pro-
files. Here, though, there is no choice of model; it is
dictated by theory.

Fig. 16 shows a comparison of the integrated mass from
this theory-based density profile to one based on NFW.
Unlike the NFW model, no arbitrary cutoff at some high
virial radius is needed because the density proceeds ex-
ponentially to zero on its own. In addition at low radii
the increasing density, as shown above, can be integrated
all the way to the origin so that no low cutoff is needed
either. These facts make the theory-based density pro-
files superior to NFW. It should also be mentioned that
since the NFW model is used extensively in DM gravita-
tional simulations, the potentials of Eq. (56) or Eq. (121)
is superior there as well. They are the actual theory-
based gravitational potentials and they behave very well
in simulations, having finite values at arbitrarily small
separations, overlaps and superpositions.
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FIG. 16. Comparison of integrated density profiles for theory
(solid) and NFW (dashed).

5. Dark Energy

It is hardly a coincidence that DE came to prominence
at an era when galaxy clustering was mature. As was
shown, the concentration of DM, so to speak, within large
gravitational structures stretches the exterior space into
a negative energy state. This is a consequence of the
tracelessness of sl(4,R).

6. Black Hole vs Red Hole

Note that although spacetime is extremely distorted
for r ≈ 2m, there is no event horizon and no singular
black hole. Such a black hole without singularity will be
called a red hole for convenience. It appears that all the
current observational evidence for black holes appears to
be consistent with red holes as well, but they should be
distinguishable for large enough fields. Any phenomenon
occurring at rb around a black hole occurs at rr around
a red hole, a smaller radius.

For example, Fig. 17 shows the differential redshift be-
tween a black hole with Schwarzschild radius, rs, and a
red hole of the same mass, rs/ 2. 400 nm light emitted
at the Innermost Stable Circular Orbit (ISCO), r = 3rs,
would be redshifted to about 490 nm for a black hole.
For a red hole the same 490 nm red shift occurs at about
r = 2.45rs, a somewhat smaller radius. A model inde-
pendent method of measuring the mass of the hole and
the radius of the accretion disk at the ISCO should be
able to distinguish the black hole model from the red hole
model.

In terms of geodetic effects in high fields the two mod-
els have a relative difference of about 1% at r ∼ 7.5 rs
and 10% at r ∼ 2.5 rs as shown in Fig. 18.

The concentration parameter, k, is set to k = 1/m for
black holes. Higher k values have a negligible effect of
the model differences. However, lower concentrations for
the same mass exhibit progressively larger differences. If
such objects exist they could be excellent candidates for
testing the model.
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7. Galactic Shields

IV. CONSEQUENCES

A. The Nature of the Vacuum

”Empty” space is therefore composed of the tail ends
of all the matter in the universe. Given the dynamic na-
ture of the universe, spacetime events undergo constant
displacement fluctuations; these are the vacuum fluctua-
tions. Each fluctuation has equal positive and negative
energy density regions of the Yukawa gauge potential un-
der GR. By themselves they do not contribute to the a
Cosmological Constant. This explains the ≈ 120 order-
of-magnitude Cosmological Constant Problem.

That the matter of the universe is spread throughout
spacetime is likely why the ΛCDM model works so well
— in spite of the clumpiness of large scale structure.

B. Wave Nature of Matter

The above clearly shows that the wavefunction of a
particle is not an epistemic phenomenon. A particle is
a continuum, spread over a finite region of space. The
parameter, k, is a measure of how spread out it is. This is
in line with the ontic interpretation of the PBR theorem.
This has been partially obscured by the use of i in the
wavefunction. That shows the Schrödinger equation, for
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FIG. 19. Particle and anti-particle. A real particle would
oscillate between these two configurations.
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FIG. 20. Particle and anti-particle. A real particle would
oscillate between these two configurations.

example, as a pair of coupled real equations; a physical
displacement of spacetime events. This metric in Eq. (66)
of course precludes the notion of a ”point particle”. At
a small enough scale particles are just a continuum field.

1. Elementary Particles

Figures Figs. 5 and 7 show the density and mass pro-
files of a static, neutral spinless particle with the mass,
mH , of the Higgs boson. They depict a particle with a
positive energy core having an energy greater than the
particle’s total mass-energy. This is enclosed by a nega-
tive energy shell compensating the excess energy of the
core. The result is a total mass mH . Of course a real
Higgs particle will not be zero energy. As mentioned
above the gauge field is oscillatory as in Eq. (52) giving
the above profiles as standing waves, Fig. 19. It is its
own antiparticle. A Lorentz transformation gives this as
a traveling wave when the particle momentum is non-zero
and the field momentum is real. Unseen in Fig. 20, both
curves start at the origin at a scale of ∼ 10−54 m.

2. Locality

For r >> 2m the small residual mass density as seen
from the laboratory frame is the mass due to the energy
of what is usually referred to as the external gravita-
tional field. However, it is the extension of the mass,
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through space, that interacts directly with another mass;
one mass melds smoothly into another. As noted above,
if they interact without fields, then they must not be
at a distance. Their gauge fields superpose being linear
K-G equation solutions, but the stress-energy tensors do
not, being non-linear in the metric. This means that the
”whole” is different than the sum of parts. Two separate
masses are in a sense one thing. In other words they are
entangled, or summed states.

3. Comparison With Experiment

The precision measurements of the geodetic effect by
Gravity Probe B is in agreement with theory to better
than 0.5% [42]. In particular the traditional expression
for the geodetic orbital precession of the on-board gyros
is given by [43]

∆α = −2π

(
−1 +

√
1− 2m

r
− m

r

)
Sin[θ]

≈ 3mπSin[θ]

r
+

9m2πSin[θ]

4r2
(119)

while here we have (k ≈ ∞ since this is an aggregate of
atoms) for the 650 km high orbit),

∆α = −2π

(
−1 +

√
e−

2m
r − m

r

)
Sin[θ]

≈ 3mπSin[θ]

r
+
m2πSin[θ]

4r2
(120)

These expressions agree to first order in m/r. They dis-
agree to second order by a factor of 9, but the magnitude
of that term is one part in 10−10 and 10−9, respectively,
of the first term. These differences are clearly beyond
the capabilities of that experiment. So this theory is not
inconsistent with the traditional formulation in neither
the case of the black holes, nor the weak gravitational
field of the Earth.

4. Dark Matter

Macroscopic fields may be realized in two ways. Macro-
scopic baryonic fields can arise from large masses like
stars, gas and planets. In this case the geometric mass
arises from the sum (appropriate integral) of all the con-
stituent elementary particles. Their gauge fields can be
added due to the linearity of the K-G equation. Also
there is nothing to require that k comes from elementary
particles at all. As long as it is a solution of the K-G
equation it can represent nothing more than a displace-
ment of events over some region specified by k. In this

case k ̸= mc
ℏ and k ̸= c2

κm . This fits the properties of Dark
Matter exactly. No dark matter particles have yet been
detected [44]. It is likely that at some critical density

DM condenses into elementary particles. This may cor-
respond to the well-documented acceleration scale found
in the outer regions of spiral galaxies, the energy den-
sity being proportional to the square of the acceleration.
Eq. (56) can also be considered as the limiting case of the
superposition of 2 free K-G gauge solutions of this type
- one of positive gravitational mass and one of negative
gravitational mass:

Φ(r) = −m

(
e−k−r − e−k+r

)
r

. (121)

As k− becomes arbitrarily small, Eq. (121) approaches
Eq. (56), and all of its features. It looks like a non-
singular mass at the origin whose energy is entirely grav-
itational and covariant and is balanced at very large dis-
tances by an equal and opposite mass of negative gravita-
tional energy. Such a configuration can be created from
nothingness (not the vacuum) without energy in the ”free
lunch” scenario. This will be taken to its logical conclu-
sion in the cosmology section below. This is a case of
very long wavelengths.

C. Quantization of Charge

Since the EM field in (30) is a gauge field, it is a gravi-
tational potential. In the traditional Reissner-Nordström
metric [45] the contribution, Φg, from the electric field,
E, is proportional to q2 so that

g00 = 1− 2m

r
+Φg = g00 = 1− 2m

r
+
Cq2

c2r2
. (122)

Here Φg can be viewed as the EM self-energy, and as a
source for the gravitational field,

Cq2

c2r2
=
Cq2/

(
rc2
)

r
=
Cme

r
, (123)

with methe mass equivalent of the EM energy. However,
if the gauge field is now proportional to the electric field,

Φg ∝ Cq

r2
=
Cq/r

r
, (124)

then the constant, C, must contain a factor of q, even
if only on dimensional grounds. Since C is constant and
the energy is proportional to q2, then there has to be
a universal q, equal to e, the basic electronic charge,
contained in C. In fact

C =
κe

4πϵ0c4
(125)

in SI units. So quantization of charge is a consequence
of identifying the EM field as a GR gauge field.
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D. Higgs Field

The physical reason for the Yukawa potential Eq. (50)
in Eq. (56) is to prevent the singularity. That is why it
is attached to all massive particles. This is the classical
analog of the Higgs boson. It is a solution to the scalar
field equation and it provides all massive particles with
inertial mass, k. It has equal and opposite positive and
negative energy parts, like the particle-antiparticle pairs
from Higgs decays [46]. Also it has zero energy, which is
lower than the vacuum, like the Higgs. From a quantum
perspective this is an imaginary-mass field like the Higgs
(Eq. (55b)).

Spacetime contains matter and therefore energy; it cor-
responds to the Higgs field in quantum terminology. It
provides a ”picture” for it. If enough energy density is
present at some event, it will collapse into a gravitation-
ally bound structure. This structure then shields itself
from becoming a singularity by pulling a ”Higgs” from
spacetime (the vacuum). In other words, it is more ener-
getically favorable to form a gauge solution to the K-G
equation than it is to form a singularity; the singularity
does not solve the K-G equation locally, a necessity of
relativity. This ”Higgs” is in fact the source of the iner-
tial mass of particles, coupled as it is to spacetime. The
Higgs field that permeates all space is simply spacetime
itself, which is not empty; it contains solutions to the
K-G equation as gauge fields.

E. Cosmology

Boundary Condition

Until now it has been assumed that fields came from
small displacements of spacetime from its value with-
out the disturbance, that is, far from the disturbance.
Nothing has been said about the boundary condition,
assuming space was Lorentzian at large distances. As
mentioned above Gµν = 0 is wrong, at least near the
source. Although G=0 still means the space is empty,
this condition is not to be found, except at the bound-
ary between equal and symmetric distributions of matter
and antimatter beyond the observational horizon of our
universe. As a solution of gauge type Eq. (56) from a
star decays, it blends into the dark matter of the galaxy
as in Eq. (121), which blends into the dark matter of the
local group, and so on. The metric decreases exponen-
tially from the source never exactly reaching zero. This
suggests that the boundary condition on the metric for
a localized matter distribution approaches a small non-
zero ”vacuum” value corresponding to Eq. (121) for its
encompassing distribution. Proof of this is that all ag-
gregations of matter measured contain DM. There are
some dark galaxies but recent re-calibrations show that
at least one galaxy thought to be devoid of DM does in-
deed contain it. So the metric for any distribution of
matter will tend at large distances to the gauge field so-

lution, Eq. (56) for the larger distribution of matter in
which it participates, that is, its dark matter.
ΛCDM models estimate about 16% of matter is bary-

onic, the rest being Dark Matter. It is an obvious spec-
ulation to consider that the baryonic matter condensed
from the DM the same way a cloud forms from water va-
por at a critical pressure/energy density. From Eq. (41)

T 0
0 = ρ = T 1

1 = −P (126)

so that the ratio of radial pressure to rest density is -1,
giving these solutions the same property as a Cosmolog-
ical Constant, Λ, except that it can vary in both space
and time. These solutions however occur at any scale, so
they can represent the DM as shown above for galaxies,
galaxy clusters, superclusters, etc. They have negative
pressure and have regions of negative energy density in
their outer regions, either of which may appear as Dark
Energy fueling the accelerated expansion of the cosmos.
In addition, time dependent solutions like Eq. (52) may
mimic Quintessence. So at once these ”scalar fields” may
provide the seeds for large structure formation while ac-
counting for both DM and DE obviating the need for
Λ, inflation or other heretofore unobserved phenomena.
That is, these are just normal gravitational fields ex-
pressed as gauge fields.

Critical Energy Density (Mass Discrepancy-Acceleration
Relation)

The pattern of Eq. (56) repeats itself at all scales.
At some point it appears that spacetime collapses into
a gravitationally bound structure. The classical energy
density near the ”edge”, R for a mass M is

E =
1

8πκ

(
κM

R2

)2

∝
(
M

R2

)2

. (127)

Very roughly, M
/
R2 in SI units for a neutral meson,

a galaxy and the observable universe might be

10−28

(10−14)
2 ∼ 1042

(1021)
2 ∼ 1052

(1026)
2 ∼ 1 (128)

Although this is a crude estimate, it is interesting that
over such an enormous scale the ratio is about the same.
That leads to the speculation that structure formed from
the outside in. That gives an acceleration at the bound-
ary of

a = κ
M

R2
∼ .667× 10−10m

/
s2 (129)

which is less than a factor of 2 from the value 1.2 ×
10−10m

/
s2 which is the small acceleration cutoff value

[35] for the MOND model. The curvature parameter,
k, in these potentials determines where the zero energy,
zero scalar curvature radii are located. It is at these radii
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where the Mass Discrepancy problem begins; it is where
the rotation curve profiles flatten out. k is proportional
to the mass enclosed. It is possible that when these met-
rics for matter distributions are made dynamic they will
provide a calculation for both critical energy density and
the low acceleration threshold.

Lithium Problem

Baryon Asymmetry

As shown above, there is some asymmetry between
matter and anitmatter, although their masses are the
same. Consider the g00 component of the Schwarzschild
metric (which is still valid for T=0) with M replaced by
-M.

g00 = 1− 2κM

c2r
→ 1 +

2κM

c2r
(130)

This is obviously not symmetric - one expression can
approach zero and the other cannot. However the re-
placement

1−2κM

c2r
→ −1+

2κM

c2r
= −

(
1− 2κM

c2r

)
= −g00. (131)

restores symmetry if g→-g. This amounts to switching
from the Mostly Minus (MM) convention to the Mostly
Plus (MP) convention for the metric. The prevalent way
to do this is to concomitantly change the matter tensor
T→-T in the EFE. In this already-unified field theory
the EFE is postulated as an identity so the actual matter
tensor changes sign, not the equation.

Since matter and antimatter are mutually repulsive it
is obvious where the missing antimatter is. It separated
from matter in the early epochs of the universe and is
still out there beyond the horizon This suggests the in-
terpretation that a change in metric signature changes
from a region of space dominated by matter to one dom-
inated by antimatter. That would also imply that g=0
at the boundary. The boundary then is the region where
there is no matter and no spacetime. This restores the
sound philosophical principle that space and time rely on
matter for their existence. This was Einstein’s belief as
a consequence of Mach’s principle [10].

For example, the static, spherically symmetric gauge
field in Eq. (38) changes

ζζζµν =

 Φ 0 0 0
0 Φ 0 0
0 0 0 0
0 0 0 0

→

 −Φ 0 0 0
0 −Φ 0 0
0 0 0 0
0 0 0 0

 ,

ζζζµν =

 Φ 0 0 0
0 −Φ 0 0
0 0 0 0
0 0 0 0

→

 Φ 0 0 0
0 −Φ 0 0
0 0 0 0
0 0 0 0

 . (132)
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FIG. 21. The mass profiles for potentials in Eq. (50) and
Eq. (56) under signature symmetry (+m solid,-m dashed).

since the base metric also changes. So Eq. (40) becomes

ga =
(
eζζζ
)⊺

·


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2Sin2(θ)

 · eζζζ

=


−e2Φ 0 0 0
0 e−2Φ 0 0
0 0 r2 0
0 0 0 r2Sin2(θ)

 . (133)

As shown in Fig. (21) the mass profiles for potentials
Eq. (50) and Eq. (56) have perfect symmetry under signa-
ture reflection. Since antihydrogen has been considered
a CPT conjugate of hydrogen, symmetry now requires
CPTg as the new conjugacy.

V. SPECULATION

A. Big Bang

Big Bang

Matter must have separated from antimatter in the
early epochs of the universe. Assume the universe started
out symmetric. Consider matter and antimatter evenly
dispersed. As an example consider a simple cubic lat-
tice like salt with matter at the sodium sites and anti-
matter at the chloride sites. Such a configuration would
have zero energy. It would also be highly unstable. If
the lattice spacing was very small the metric would be
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zero, which challenges the notion of lattice spacing. A
vanishingly small perturbation would start the separa-
tion with matter and antimatter segregating as space and
time come into being. An elementary simulation of this
can be found at https://thematterofspace.com/. Each
specie begins to implode to a high density as they con-
tinue to separate. The implosion imparts kinetic energy
to each specie which then causes an expansion. Of course
a detailed cosmology needs to be built on this, but some-
thing like this must have happened. It also has some
advantages over current cosmologies. The prevalent pic-
ture is that all matter comes into existence instantly at
an infinitely high temperature singularity. Once again
singularities and infinities are unphysical. This model
has the initial condition of nothingness. Although there
is initially no space or time, it might be said that it all
started with an infinitesimally small perturbation an in-
finitely long time ago, just as a manner of speaking.

The mathematical model of this is obtained from
Eq. (52). However, at t=0 no perturbation of the metric
is small so Eq. (14) would now be

dx̄µ = ζζζµνdx
ν (134)

making Eq. (16)

gµν = ζζζµλḡµνζζζ
ν
τ . (135)

So using the solution Eq. (52) with α=-π/2 in Eq. (121)

Φ(r) = −mSin[ωt]

(
e−k−r − e−k+r

)
r

. (136)

The metric is zero on the boundary between the mat-
ter and antimatter ”universes”. This means there is no
spacetime separation between them. If the Cosmological
Principle holds, each event being equivalent, this implies
a certain topology. The antimatter part would be beyond
the horizon for all events.

B. Baryon-Lepton Symmetry

Methodology Summary

Everything herein follows solely from the three axioms.

Ontology

AAA.1 is really all that is needed. AAA.2 should be a re-
quirement of any theory. AAA.2 was needed to help deduce
the implementation of AAA.1. AAA.1 is an enormous ontolog-
ical simplification of physics. What can be said to exist
is spacetime and its distortions.

Epistemology

This entire ”theory” is mainly just the hypothesis that
spacetime is never empty and therefore the EFE is an
identity rather than an equation:

Gµν + Λgµν ≡ 8πκ

c2
Tµν , (137)

which completely changes the epistemology of GR. His-
torically T has been taken to contain all sources of energy
- except gravitational; gravity was ”accounted for” on the
left side of the equation. This has not been satisfactory
from either a unification or a quantization point of view.
Now all the forces are on the left as gauge fields, treated
in the same way. This results in the observable, T, as all
the energy that is the source of the gravitational field.
As mentioned above, the metric tensor must be known

in order to calculate the correct relativistic value for T.
So to solve for the metric tensor in this circular conun-
drum, both the metric and the matter density must be
determined together along with symmetry conditions and
an equation of state. An equation of state is provided
apart from the field equation and therefore apart from
the general theory of relativity, even if it is expressed in
covariant form. The Correspondence Principle histori-
cally has been used by postulating that the limit of the
left hand side of the EFE is equal to the classical limit of
the right hand side in the weak-slow approximation. In
this way

Gµν =
8πκ

c2
Tµν −→ ∇2Φ = 4πρ, (138)

which was initially obtained by reverse-engineering the
Poisson equation.
This methodology uses the historical approach in re-

verse. The EFE is now a wrapper for the base space
fields. That encapsulation is what allows unification
without modification of the mathematical structure of
GR.

∇2Φ = 4πρ, Fµν
;ν = jµ, etc.,−→

Gµν (gαβ (ζ
σ
τ )) + Λgµν (ζ

σ
τ ) ≡

8πκ

c2
Tµν . (139)

Complex quantum fields need to be represented as real
functions of the coordinates to make the mapping. For
example, a complex scalar field, Ψ can be expressed as

Ψ̄ = e−iΛΨ →
(
ϕ
χ

)
=

(
Cos[Λ] Sin[Λ]
−Sin[Λ] Cos[Λ]

)(
ϕ
χ

)
(140)

for a gauge transformation using coupled real fields or

Ψ = ϕ+ iχ =

(
1 0
0 1

)
ϕ+

(
0 1
−1 0

)
χ =

(
ϕ χ
−χ ϕ

)
,

(141)
using matrix representations of 1 and i. In this case

the result is the sum of a symmetric field representing the
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mass and an antisymmetric field representing the charge
as expected for a complex scalar field. This can be ex-
tended to spinor fields, etc. There is much more work to
be done to turn this into a complete theory.

Appendix: Geometrized Units

The electric field components of the EM tensor in SI
units is E/c. This has units of kg/(sC). So this is the unit
of the proportionality constant, η, in Eq. (17) between
the EM field and its dimensionless displacement field.
Table 1 contains a sample of physical quantities in these
new MSI units.

TABLE I. A sample of physical quantities in these new MSI
units.

Quantity Symbol Unit
Electric field E m/s
Magnetic field B 1
Vector potential A m
Charge q kg/s
Permittivity ϵ kg/m3

Permeability µ m2/N
Magnetic flux Φ m2

Momentum q A kgm/s

This provides a view of spacetime such that the speed
of light is

c =

√
1 /µ0

ϵ0
∼

√
B

ρ
, (A.1)

where B is the bulk modulus and ρ the density as is
typical for materials. So ϵ0 has the role of density and µ0

has units of compressibility in this picture of spacetime.
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