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Abstract

The s[(4,R) algebra as a background-dependent representation of quantum fields is a basis for
unification as a gauge invariance of the metric in General Relativity, a background-independent
theory. No changes are made to the Einstein field equations. This algebra contains both fermionic
and bosonic fields as well as gravitational fields. Mass parameters are constrained by the volume
integral of the trace of the stress-energy tensor, providing a non-linear eigenvalue equation for
mass values. An example is provided for static, spherically symmetric gravity. In different regimes
this gives normal Schwarzschild gravity, black holes without singularity, galaxy rotation curves.

Dark Matter and Dark Energy entail.
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1. Introduction

To completely understand and control gravity, its relationship with the other forces and
the quantum realm must be understood — beyond the assertion that all forms of energy
generate gravity, one that has not been completely tested. This is challenging for several
reasons. The action-at-a-distance problem has been solved for gravity through a dynamic
spacetime. This is not so for the other forces, where fields still perform that function. It
would seem that the elimination of those fields (replacing them with a spacetime construct),
is necessary to complete the task of geometrizing all the forces. Even so, there are other
issues. General Relativity (GR) is a theory of spacetime not of matter; both the mechanism
by which matter affects the curvature, and how curvature determines the motion of matter,
are left unspecified. A closely related issue is that of Mach’s principle: the details of the
interaction of matter with spacetime can hardly be understood without specifying the origin
of inertia. Perhaps most intractable are the differences between GR and Quantum Theory
(QT). GR as a coordinate invariant theory is called background independent, while QT
”depends” upon a specific choice of metric. GR is a non-linear theory, while QT is based
upon the superposition principle, which requires linearity.

So it seems a geometric view of matter is required as well. Such a construction would

hopefully eliminate the singularities in black holes. This is in fact what happens.

The problem of the lack of a fundamental description of matter also plagues QT. Beyond
quantum numbers and symmetry groups, matter is treated simply as point particles. This

is the source of the infinities that plague QT [1], notwithstanding renormalization.

These problems are all clearly interdependent. That is why a complete understanding of

gravity has been a refractory endeavor. Fortunately, there is a simple solution.



2. Methodology

A subtle yet profound change to the ontological basis of physics can both lead the way
to a unified field theory and shed light on the epistemological differences between GR and
QT. There is a simple framework for unification that is testable, refutable, and leaves the
Einstein Field Equation (EFE), Maxwell Equations (ME) as well as QT intact. This is a
geometrization of quantum fields rather than a quantization of gravitational fields; gravity
naturally takes its place as a quantum field among the others.

The key to understanding gravity is, strangely enough, understanding Electromagnetism
(EM). The clues provided by the ME, using simple reasoning, define gravity’s relationship
to the other forces, and to GR, as well as GR’s relationship to QT. The result is a simple
gauge invariance of GR with a remarkable list of consequences. That is the invariance of the
4-volume under the Lie algebra s((4, R).

The following set of deductions and inferences provides a compelling argument for this
already-unified gauge field theory. The reasoning is based upon two principles that are not

entirely independent. They are actually inferred from the theory, not the other way around.

1. It is necessary to mitigate action-at-a-distance to fit the other forces into GR. The use
of the word mitigate above is literal, to lessen. Assuming matter at a distance cannot
interact without fields yields a contrapositive; if material particles do interact without
fields, then they must not be ”at a distance”. There is only one way this can happen:
matter itself must extend through spacetime, as part of the same continuum, so that
one particle can smoothly meld into another. So in order to eliminate the field concept,
a particle must be made up of the same "stuff” as spacetime with most of it fairly well

localized to appear as a particle. This is a significant change to the ontology of physics.



Two particles can therefore interact using a field as an intermediary, or a dynamical
spacetime. The field concept becomes superfluous if it assumed that a spacetime
displacement field solves the same equations locally as the locally derived field theories.
This is shown below and is the implementation of what has been called the Mazwellian
dream [1]. A spacetime composed of the tails of all the matter distributions in the
universe has the same properties as the Dark Matter (DM) — empty space is not
empty. This also explains why AC DM, despite it shortcomings, works as well as it

does given the clumpiness of space.

2. The field should be free from singularities.

The presence of singularities in GR is unacceptable [2]; an acceptable theory has to
work everywhere. Infinities are unmeasurable. Particles must be represented by a
finite matter field in some finite region. The observables of spacetime are distance and
duration. These are specified by the metric tensor. Therefore, for any real configuration
of matter there must exist a coordinate system that results in measurable intervals
everywhere. As will be shown, the removal of singularities is an automatic byproduct

of the gauge theory.

3. The Gauge Field

GR is a gauge theory. The gauge invariance of GR is the invariance of the spacetime
interval under coordinate transformations. In all the examples analyzed the gauge field
has zero trace. Therefore the gauge fields will all be assumed to be based upon the gauge
invariance of the 4-volume, that is, the Lie group SL(4,R). It has been shown that all the

Lie groups of the SM can be found from the corresponding algebra of sl(4,R) [3].
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The Maxwell equations are analogous to the equations of fluid flow, complete with sources,
sinks and vortices. This was noted by Maxwell early on and there were attempts to mechanize
the field with a quasi-elastic ether model [4]. The approach was to assume space contained
some kind of ”"aether” that could flow or spin. These ideas were unworkable. Therefore
the analogy is either an accidental coincidence, or it represents some other kind of motion.
There is only one other possibility for such a displacement field. It is that the Mazwell equa-
tions represent a transformation of spacetime points themselves, rather than some substance
occupying spacetime points. Simply accepting it as a "field” admits that the structure of
the equations is a coincidence. Such an acceptance also introduces a new elementary object
that requires its relationship to gravity be separately defined, unnecessarily complicating the
ontology — Occam’s razor. After all, EM fields can only be ”detected” by the charges that
are supposedly their sources. The fact that they can carry energy and momentum simply
translates to spacetime displacements carrying them instead. The transformation of events
can be described mathematically in the same way as that of a deformable physical medium.
Consider an infinitesimal displacement, €, in the neighborhood of a small volume element
in a 3 dimensional Euclidean space. It is composed of a rotation, a compression (extension
or shear), and a translation [5]. Expressing this in terms of the symmetry properties of an

infinitesimal displacement field in 4 dimensions now,
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with ¢ the symmetric tensor and o antisymmetric. Finite displacements can then be repre-



sented as exponentiated displacements as usual,
ds? = G () da*) ()7 da™) = ()} G (&))) de’da™ = grrda*da”  (2)

Thus the displacements can be considered either as new coordinates for the points using the
old metric, g, or as a new, transformed metric, g, using the old coordinates. The gauge field,
¢, transforms the metric, and as argued below, contains all the forces.

The transformed metric using the old coordinates can be thought of as the consequence
of using the "wrong” coordinates, that consequence giving rise to "fictitious” or inertial
force fields, the usual view of gravity. This gauge transformation of the metric tensor is a
type of factorization of the metric, but based on general tensors rather than tetrads. The
transformations among the -variant forms of ¢ and its covariant derivatives still use the base
space metric since they are measured in the local tangent space to the manifold, and with
respect to the old coordinates.

All the formulations of physical laws using the field { and its tangent space metric are
therefore ”background dependent” [6]; they rely on a background metric that may vary from
event to event. Their phenomenologies are derived in that local space, depend on its metric,
and as such cannot be expected to have a generally covariant form. They are flat-space
laws. However, Eq. (2) defines their relationship to the exact metric tensor and therefore
defines their participation in a generally covariant ”background-independent” theory, GR.
That theory now involves all the forces, at all scales, classical as well as quantum fields.

The flat space laws are subject to quantization which relies on their background depen-
dency. These quantum fields can be mapped into ¢ based upon their analytic and geometric

properties, when expressed as functions of the coordinates [3]. This gives them a classical
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picture. Although the terms ”field” and ”displacement field” are being used, no new fields
are being introduced; these mathematical fields just describe the displacement of events from
their base-space coordinate locations in spacetime. Now the connections among the Maxwell

equations, spacetime flows and rotations, and the metric tensor can be specified.

The antisymmetric part of the displacement field in Eq. (1) represents rotations and flows
of events with respect to the base space coordinate system. It is also an exact tensor so
automatically satisfies 2 of the Maxwell equations. It is therefore taken to be (proportional

to) the EM field, F', which is defined in terms of the vector potential,

1 1
Qo = 2 (Euw — Eop) = §§ v ] = fuw X Fw =0fuws B = Gpp — Qv s ¢ = (A07 AL) (3)

4. The Already-Unified Gauge Field Hypothesis

Consider the generalization of Eq. (2) where the gauge field ¢ is any second rank ten-
sor. ¢ can be decomposed into a tensor with zero divergence and one with zero curl (anti-
symmetrized derivative), and this process continuing with the resulting vector and scalar

fields. It is the main hypothesis here that these displacement fields, (, are

Cuwr = Xuw + (B + uip) + A + frv | (4)

where both the tensor field y and the vector field ¢ have zero divergence, \ is a scalar field and
f is the EM field. The symmetric fields generate gravity; scalar, vector and tensor aspects.
The antisymmetric vector field is EM. For a given configuration of matter the equations of

these fields are known: Klein-Gordon, Maxwell, Dirac, Proca, etc. Since these fields are also



linear operators, and they satisfy the necessary sl(4, R) commutation relationships, they are
also quantum fields. They are what appear in the local space as force fields. More generally
all linear combinations of the generators of the sl(4,R) algebra are possible, including real
spinor representations of the group [3]. This is the implementation of the first principle. The
physical significance of this invariance under the group SL(4,R) is that the aether seems
like an elastic material. Spacetime can bend and stretch but not tear. The accumulation at

one event must be compensated at another event. This crucial fact is at the heart of both

DM and Dark Energy (DE).

5. FExample - Spherically Symmetric Gravitational Field

The EM field can be expressed as an antisymmetric tensor and gravity is the symmetric
part. This then gives the two types of fields their known properties: EM, the antisymmetric
part cannot, by itself cause gravity (it is gauge dependent), nor be transformed away by any
real coordinate change. On the other hand gravity, the symmetric part, can be transformed
away, locally, leading to the known universality of free-fall. Also gravity is often depicted as
stretches or compressions of the ”fabric” of space and time. Identifying the symmetric field
with gravity is therefore consistent with the prevalent picture.

In all cases the methodology is the same. The gauge field is the local solution to the
appropriate equation of state. This gives the metric from Eq. (2). That metric is put in
the EFE giving the matter tensor. The trace of the matter tensor is the scalar invariant
mass density. The density is integrated over the 4-volume to give the mass. This is very
different from the way solutions to the EFE are normally obtained. The mass appears both

in the local gauge field solution and integrated density tensor. They must be equal. This



is a constraint on allowable masses in general. It is hypothesized that this will generate the
spectrum of masses of elementary particles for the appropriate gauge fields. This is true for
the spherically symmetric (spin zero), scalar masses shown next. The masses are equal but
unconstrained in this case. In any case this shows that masses are completely composed of

gravitational fields and the EFE is interpreted an identity.

The gauge field for the Schwarzschild-like solution to the EFE is given in spherical co-
ordinates by the diagonal tensor {®(r), —®(r),0,0}. Locally, this is a single component,
i.e., scalar field, ® (a tensor field with one independent component). Its equation of state is
the Klein-Gordon (K-G) equation. The spherically symmetric, static solution is a Yukawa
potential. The expected mass enclosed is the integral of its square up to some point . This
gives a gauge field of 2 terms: a Yukawa term and a classical gravitational potential for
the mass m. It is also obtained by solving the K-G equation in the classical gravitational
potential of the mass by adding an interaction term to the Lagrangian density for the K-G
equation [7]. This is a material particle (region of spacetime) interacting with its own grav-
itational field with coupling constant k. [t is this interaction that couples the inertial mass

to the gravitational mass of matter.

1 m

L= W) - %kQCI)(r)z b Lo, Low = V()O(), V()= k2" (5)

yielding
(L—e™)

O®(r) + k*®(r) — V(r) =0 = &(r) = —m .

If the Yukawa term were used by itself, the result is equal and opposite amounts of

positive and negative gravitational energy, giving a net of zero — an interesting result in its



own right. This is analogous to the way the Higgs field couples to the electroweak field.
For most values of mass and radius this gravitational field is indistinguishable from that
of the Schwarzschild solution. The differences are as follows. This field is never zero, it is
only approached asymptotically. Spacetime, gravity and the mass are all the same thing
and nonzero everywhere. The Schwarzschild solution is for G = 0 in the EFE. The space is

empty outside the mass. The solution is only valid outside the mass. This metric is finite at

the origin. There is no singularity and no event horizon for such "red” holes.

It is very difficult to discern this solution (red hole) from a black hole. As shown in Fig. 1

for the Innermost Stable Circular Orbit (ISCO), any phenomenon occurring at r, around a

black hole occurs at 7, around a red hole, a somewhat smaller radius.
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FIG. 1. ISCO red shift of 400 nm light, black hole (dotted) vs. red hole models.

For galaxy-sized masses, there is a characteristic hump in the enclosed-mass vs radius
curve, similar to that found in galaxy rotation curves as in Fig. 2. It is known that rotation
curves lose their dependence on radius and depend only on the enclosed mass [8]. It is caused

by a region of negative energy density due to the Yukawa term as seen in Fig. 3. This flattens

out the rotation curve like DM, and at far distances the negative ratio of energy to pressure



looks like DE.
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FIG. 2. Mass profile for the complete gauge field for a Milky Way model (m = 5.6 x 1075 kpc, k =
2.2/6 kpc™1).
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FIG. 3. Scalar density for the complete gauge field for a Milky Way model (m = 5.6 x 10~ kpc, k =
2.2/6) kpc™1).

6. Conclusion

This theory is a complete unification of gravity and the other forces. There are many more
consequences of this theory. Electric fields are a source of gravity, magnetic fields, negative
gravity. EM planes waves follow geodesics, but are not a source of gravity. Gravitational
radiation is a source of gravity in covariant form, with a matter tensor identical to the

TT-mode Isaacson tensor of the linearized theory. Cosmological consequences are many.
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